Analysis and Evaluation of Performance Gains and Tradeoffs for Massive MIMO Systems

نویسندگان

  • Saba Qasim Jabbar
  • Yu Li
  • Christos Verikoukis
چکیده

Massive MIMO technique offers significant performance gains for the future of wireless communications via improving the spectral efficiency, energy efficiency and the channel quality with simple linear processing such as maximum-ratio transmission (MRT) or zero-forcing (ZF) by providing each user a large degree of freedom. In this paper, the system performance gains are studied in a multi-cell downlink massive MIMO system under the main considerations such as perfect channel estimation, imperfect channel estimation and the effect of interference among cells due to pilot sequences contamination. Then, mathematical expressions are derived for these gains i.e., spatial multiplexing gain, array gain and spatial diversity gain. After that, essential tradeoffs among these gains are considered under the effect of non-orthogonal interference, these tradeoffs are: spatial diversity gain vs. spatial multiplexing gain and array gain vs. spatial multiplexing gain. Simulation results show that the unbounded number of base station antennas boosts the array gain through concentrating the energy to spatial directions where users are sited, hence diminishing loss in array gain due to pilot contamination. The simulation results reveal also that massive MIMO strengthens the spatial multiplexing gain through increasing the number of served users via the same system resources in spite the effect of inter-cell interference. Finally, the spatial diversity gain is measured in term of outage probability and the simulation results show that raising the number of antennas will improve the outage probability. Meanwhile increasing the number of served users will lead to degrade the outage probability per user due to non-orthogonal interference from other cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy efficiency and sum rate tradeoffs for massive MIMO systems with underlaid device-to-device communications

In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequatel...

متن کامل

LuMaMi - A flexible testbed for massive MIMO

Massive multiple-input multiple-output (MIMO) is one of the strong candidates for future generation mobile systems. Theoretical studies promise orders-of-magnitude improvements in both spectral and energy efficiency, as the number of antenna elements on base-stations grow large. While these studies are performed under simplifying assumptions, such as independent and identically distributed elem...

متن کامل

Over-the-air Performance Evaluation of Massive MIMO Base Stations in Sectorized Multi-Probe Anechoic Chambers

Massive multiple-input multiple-output (MIMO) is seen as an enabling technology to fulfill dramatic improvements in spectral efficiency for 5G deployment in 2020. For massive MIMO systems, the learning loop from early stage prototype design to final stage performance validation, is expected to be slow and ineffective. There is a strong need to evaluate massive MIMO base station (BS) performance...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016